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i. A class of solutions of the unsteady three-dimensional gasdynamical equations has 
been found [I] such that the components of the velocity vector depend linearly on all the space 
coordinates xl, xa, x3. These solutions are described by a system of ordinary differential 
equations with an independent time variable t and have been used, in particular, to study the 
dynamics of a gravitating gas ellipsoid [2]. Certain solutions of the Navier--Stokes equations 
for steady three-dimensional flows of an incompressible viscous fluid with a linear dependence 
of the components u i of the velocity vector u on two coordinates x,, xa, and with a special 
pressure function p are described in [3]. 

Below, we investigate the solutions of the dynamical equations for an ideal gas, where 
ui, the entropy function W, and the function Q = 0 Y-* (in which O is the density and y is the 
adiabatic exponent in the equation of state p = Wp7) depend linearly on some of the space co- 
ordinates. Unlike the situation in [i], the investigation of motions of this type is reducible 
in general to the analysis of the compatibility of overdetermined systems of partial differen- 
tial equations having a complex structure. 

We propose to set forth certain sufficient conditions whereby the corresponding over- 
determined systems are reducible to determinate systems, for which the number of equations 
is the same as the number of unknown functions and which have sufficient arbitrariness in the 
solutions. In this way we establish the nonemptiness of the given classes of solutions and 
then, by the construction of concrete examples, demonstrate the substantiality of these 
classes. The complete compatibility analysis of the overdetermined systems and the classifi- 
cation of the solutions remain open questions. 

In the absence of external forces the system of gasdynamical equations is written in the 
form 

0"7 + (uv) u + Q grad W + W grad Q = O; 

oO a--T + (u grad Q) + ('r - t) Q div u -- O; 

aw 
,,Or L + (u grad W) = O. 

(1.1) 

( l .  2) 

(1.3) 

A. Linearity in One Coordinate. We seek solutions of the system (1.1)-(1.3) in the form 

ui = l~(xl, x,, t)xa + g~(xl, X,, t); ( 1 . 4 )  

O =/(zl, z,, Ox3 + g(zl, z~, t); (1.5) 
W = F(zl ,  x,, t)x3 + G(xl, z~, t). (1.6) 

Substituting expressions (1.4)-(1.6) into the system (1.1)-(1.3), we reduce each equa- 
tion of the system to the form 

A~x~+B~x3+Ci=O, ~ = t ,  2 , . . . , 5 ,  

where the functions Ai, Bi, C i are expressed in terms of the coefficients of the representa- 
tions (1.4)-(1.6) and their derivatives and depend only on xt, xa, t. Setting 

A~ = B~ = C~ = 0 (1 .7 )  

by the arbitrariness of xa, we obtain a system of 15 partial differential equations in i0 un- 
known functions fi, gi, f, g, F, G. 

We introduce the two-d/mensional vectors v = (ft, f=), w = (g~, g=), R = (g, f), S = (F, 
G), Pf = (F, f), Pg = (G, g), Tj = (f, (Y/7 -- 1)F), Tg = (g, (7/7 -- 1)G). Then the system 
(1.7) can be represented in the form 
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�9 / ap t \ v)v+ )=o,  2, 
(v.grad/a) ---- O, (v .grad/)  -5 (%, --  i ) / d iv  v =  O, 

( v.grad F) = O; . . . .  

0v + (wv) v S. = i = t, 2, a-T + (vv)w +/:jr + R . - ~  i . . . . . .  , 

a/~ 
a-T -5 (v grad ga) -k (w grad/~) -r f~ -5 (Ps" T f) = 0, 

O L/ at -5 (v grad g) H- (w grad/) H- ?//n -5 (%, -- i) / div w -5 (%, --  1) g div v = O  

OF 
a-T -5 v (grad G) -5 (w grad F) -5 F/~ --= 0; 

Ow/Ot -5 (wv)w + g a v  -5 (Tg.OPg/axi) : O, i = L2, 

@ J o t  -5 (w grad ga) -5/aga + (Tg.S) -= O, 
Og/Ot -5 (w grad g) -5 ?/ga -{- (%, -- l)g div w = O, 

OG/Ot -5 (w grad G) + Fgn = O. 

Equations (1.8)-(1.10) are the respective systems A i = 0, B i = 0, and C i = 0. 

In the system (1.8)-(I.i0) we set 

A = / ~ = I = F - ~  O. 

(1.8) 

( l .9) 

(z..1o) 

Then v = Pf = Tf = (R-3S/~x i) = (S.3R/3x i) = 0, and all the equations (1.8)-(1.9)except 
the one containing ~fs/~t will be satisfied. There now remain six equations in six unknown 
functions g,, ga, gs, fs, g, G. Finally, we write this determinate system in the form 

&__8 + (w grad/8) +/~ = 0, 0t 

o--f + (wv) w + goTi + G ----0, i =  t , 2 ,  
(X . l l )  

Oga/Ot q- (w grad gs) q- 1898 = O, 

Og/Ot bc (w grad g) + (%, - -  l)g(f 8 -5 div w) -- O, 
oG/ot q- (w grad G) ----0. 

We note that the case v = 0, (Tf "Pf/3x i) = 0, when Fg ~/Y-1 = L(t) [L(t) is an arbitrary func- 
tion], yields an overdetermlned SYStem of seven equations in six functions gi, fa, F, G. 

From the system of Eq. (i.ii) we at once obtain equations describing certain special cases. 

i. Putting ga = 0 and assuming that all the unknown functions depend only on x, and t, 
we obtain a system of five equations for plane-parallel (in the x~, xa plane) flows with a 
linear dependence of the principal functions on xa. 

2. Putting 3/~t = 0 in (i.Ii), we obtain a system of equations for steady three-dimen- 
sional flows. 

3. For the elementary case of plane-parallel steady flow we write out the system of 
ordinary differential equations for the functions gl (x,), ga(x,), fa (x,), g(xl), G(x,) : 

, , ~ 
glfa -5/~ = 0, glgl -5 gG' ~- Gg' = 0, (i. 12) 

t 

glg~ + &g~ = o, g~g' + (%,- l) g (g'~ + &) = o, g,~' = o. 

It follows from the first and third equations (1.12) that gs = Cf,, C = const, and with- 
out loss of generality we can put C - 0, because C determines the shift of the origin along 
the xa axis. In the given situation, therefore, we have a class of isentroplc planar flows 
(G = Go = const), which is specified by the followlng relations after integration of the 
second equation (1.12) : 

gt]8" 5 ]~=0, ~-I g~-577___iGog=Ko>O_ (K0_const) ' gig' +(%,--l)g(g',-5]8)----O. (i.13) 

Expressing the functions g and g~ in terms of f,, for fa we obtain a second-order equa- 
tion that does not contain x,. Integrating it, we have 

~+__! 

I'3 ~' ~ = K ~ K f / 3  ~ V ._.~,,) Is, K~-----(%,--!)Ko, K , = e o n s t .  ( I . 1 4 )  
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Again the variable x, does not enter into (1.14), so that the system (1.12) 
ble in quadratures. 

f orm 

is integ . ~ -  

B. Linearity in Two Coordinates. We seek solutions of the system (1.1)-(1.3) in the 

u~ = l~(x:, t)x~ + h(x:,  t)x3 + g~(x:, t) ,  i = l ,  2, 3, 
q = l(z~, t)x~ + / ( x ~ ,  t)x3 + g'(x~, t), ( 1 . 1 5 )  
W = L(xl, t)x~ q- F(xx, t)x3 q- G(xl, t). 

Substituting (1.15) into (1.1)-(1.3), we obtain five relations of the type 

Az~ q- Bxtza Jr Cx~ + Dx~ + Ex 8 q- F -~ O, (1.16) 

the coefficients of which depend only on x~, t. Setting them equal to zero, we obtain an over- 
determined system of 30 partial differential equations in 15 unknown functions from (1.15). 

We set 

l, =--l,-- l - - I - - O .  

Then all the coefficients of squared terms in relations (1.16) vanish, leaving a system of 15 
equations in ii unknown functions. 

In addition, setting 

L=---F~---O, 

we finally obtain a determinate system of nine equations in nine functions 12 D ~3, f2, f3, 
gx, ga, g3, g, G. It can be written in the form 

ali Off 
o-7 + gl ~ + IJ~ + 13li = O, 

al~ al~ . 

Ot -F gx ~ -P f21i -F ]3]i O, ~ + ~ og~ + gJi + gJi = O, -~ gl Oxq 
(1.17) 

Ogxo"'{ gl"~-x 1 -  Ogx g'~x lOG J.~" + + +vh-  =o, 

Og og Og~ ) OG OG = O. 
o--{-F gx-Ezx-F(V-- l)g(-~-z-F l,-F la_ ----0, W H-glox"-- x 

It follows from (1.17) ~hat steady three-dimensional flows of the type (1.15) can only 
be isentropic with G = Go = const and are described by a system of eight ordinary differen- 
tial equations. 

All of the investigated flows A and B are rotational (~u,/~x, # ~u,/~x~), and in the 
steady-flow cases the constant in the Bernoulli integral depends on the particular stream- 
line and changes in transition to another streamline. 

2. We now consider the feasibility of constructing shock solutions for the flow classes 
A and B. Let us suppose that a shock wave S moves through a gas whose state is described by 
the system (i.ii) or (1.17) and that the postshock motion of the gas belongs to class A or B, 
respectively. It is clear that if the motion of the shock front is described by the general 
equation r xa, t) = x,, then in case A the five scalar Hugoniot conditions, which must 
be satisfied along the surface S together with Eqs. (l.ll) on both sides S, yield and overdeter- 
mined system of 17 equations in 13 unknown functions depending on x,, x,, t (the function 
can be regarded as unknown). We therefore assume that the motion of the surface of S is 
described by the equation T(x~, x2, t) = 0, i.e., at every instant the shock wave represents 
a cylindrical surface in x,, x2, xs space. 

The Hugonlot conditions for our case have the form [4] 

(~P (2. l) [p(u,~--D)l=O, [ +  (u,~-- D)' + p ~)] =0 ,  

[p § D)~l =: 0; 
[(u.~)] ---- 0, [(u.~)] ---- 0, (2.2) 

where u n is the velocity component normal to the surface S, D is the normal velocity of prop- 
agation of the shock wave, and T,, Ta are orthogonal unit vectors situated in the plane tan- 
gent to S in xx, x2, x3 space. 
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Following are the expressions for Un, D, T,, and Ta: 

iif '2'~- 1/2 

It follows from the first equation (2.2) that [us] = 0, i.e., by the arbitrariness of x3 

[/3] = [g3] ---- O. (2.3)  
The remaining Hugoniot conditions yield the relations 

[g~i-~ (g,~F~ + gzl~/z-~- livt) ] = 0 ,  

V[-5 ~ (2.4) 

GgV--'-7 + g~-'-'7 ( g ~  + g~g2 + ~t) 2 = 0, [ g1~  --  g ~ l l  = 0. 
2 2 

We thus in fact have the Hugonlot conditions for ordinary two-dimensional flows. Ac- 
cording to the background values of g., ga, g, G, gs, fa specified on one side of the shock 
and the specified function T, conditions (2.4) together with the continuity conditions on the 
component us (2.3) determine the initial conditions for all six unknown functions of the sys- 
tem (1.11) along the noncharacteristic surface T = 0. Consequently, the construction of 
flows in class A with shock waves is indeed possible. A concrete example of such a flow is 
discussed below. 

Let us now suppose that for the class of solutions B the shock front is plane and that 
its motion is specified by the equation T(x~, t) = 0 (an analysis of a more general specifi- 
cation of the shock yields overdetermlned systems of equations at a discontinuity). In the 
given situation we have u n = gl, D = --~t~[ *, T, = (0, O, i), Za = (0, i, 0). From conditions 
(2.2), by the arbitrariness of x2 and xa, we obtain (the velocity components ua and us are 
continuous) 

[l~! = [/~] = [g~] = [~] = [fs] = [g~] = O. (2,5)  

Conditions (2.1), on the  other hand, have the  form 

[gV---ql 1 (g, + ~,)] = 0 ,  
*_/_ (2.6) 

As in case A, having specified the background values of the functions of the class of 
solutions B and the function ~, we can then use (2.5) and (2.6) to find the initial data on 
S for the system (1.17). Thus, the construction of discontinuous solutions of class B with 
plane shock waves is possible. 

3. Here we first investigate in greater detail solutions of the form 

ul = g l ( z O ,  u3 = / ~ ( x O z 3 ,  u~ --= O, Q = g(xO, w = Go, 

described by the system (i.13). 

Without sacrificing generality, we choose a system of units such that Ko = (7- i) -~ in 
(1.13). Then we can represent the solution of Eq. (1.14) in the followlng parametric form 
(Ka > 0, ~ is the parameter): 

1 ~ + 1  

3-~ ~ (3. i) 

Integrating the streamline equation 

dzl/gl = d~JxJs ,  
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in which g~ is expressed in terms of fs by means of (1.13), we have along a given streamline 

faxa ---- (7* ---- const. 

Thus, the investigated flows have the following geometrical property: Along each stream- 
line the component us of the velocity vector preserves a constant value. The parametric 
representations of x3 along the streamline and the functions g and g: have the form 

I ?--],-1 
c,  { (3 .2)  

g = t  ~--i l l 
2 ~2, g1=-~ -. (3.3) 

Inasmuch as g > 0, we deduce the following constraint on the parameter ~ from (3.3): 

/> ]/2/(? - -  I_). 

The case Ka < 0 is not realized~ because it induces the relation g < 0. St follows from (3.1) 
and (3.2) that for ~ = /(y + 1)/2 the streamlines have a turningp0int, while for X§ 
and ~ § ~ they go to infinity. We can therefore construct two types of flows: one with 

~ (/2/( 7 -- i), ~(7 + 1)/2] and the other with X ~ [/(7 + l)/i', .o). The first, as we infer 
from (3.3), is a rarefaction flow, and the second is a compression flow. For ~ = 3 the inte- 
gration in (3.1) is carried to completion. The streamline equa=ions are 

= W + V V - : 7 )  V + c, c = 

C* ;~ (3.4) 

( 

For 7 = 3, Ka = i, and C = 0 Fig. 1 shows the streamlines for rarefaction flow I in a semi- 
infinite plane channelfor X E [4, I) (the channel walls correspond to C* = 1 and C* = 2) 
and for compression flow II for X ~ [/2, -). In the rarefaction flow the density of the 
gas decreases to zero at infinity. 

We now examine the possibility of the rarefaction flow I going over to compression flow 
of type IS by means of a shock wave under ~he conditions of the problem stated in Sec. 2. Le~ 
the background functions in the rarefaction flow I be de,scribed by Eqs. (3.1)-(3.3), 7Go = i, 
and for X* ~ (/2/(7 -- I), /(7 + 1)/2) let the planex~ = x: correspond to a shockwave [under the 
Hugoniot conditions (2.4) ~a = Tt = 0, T~ = i]. 

2YGog* g+ = 

where the index + corresponds to the parameters 
and g* and g* are determined from (3.3) for X = 
parameter X + 

~+ = (~ + 1)/2~* 

Expanding the Hugoniot conditions, we have 

V--i , 
+ - - ~ g ~ ,  (3..5) 

of  t he  gas a f t e r  passage o f  the  shock wave 
k*. From (3.5) and (3.3) we obtain for the 

> ]/(v q- t)/2, 

i.e., after passage of the shock wave the flow is of type II with X E IX*, ~). Choosing the 
values of the constants C and Ka in (3.4) in such a way as to ensure continuity of the stream- 

* = x~ in a semlinfinite plane than- lines for x, = x,, we obtain a gas flow with a shock wave x, 
nel, which first diverges for xl < x~ and then converges for xl > x~. For xl > x~ compression 
flow is realized, where 

p+/p* = 2 / ( ~ + i ) k * ~ > l .  

1 illustrates such a channel, the numeral III corresponding 

We 

For 7 = 3 and X* -- i.i Fig. 
to the compression zone in the channel. 

We now consider isentropic flows B described by Eqs. (i.17) with G = Go = const. 
construct a special class of solutions for this system, putting 

g~ = G~(~), gh = G~(D + tTk(~), Zh = L~(~), /~ = Fk(~), k = 2 ,  3, ( 3 . 6 )  
g = G([),  ~ = x l -  at, a = c o n s t ,  H = G I - - a .  

Substitutin 8 (3.6) into (1.17) and setting the coefficients of t and the free terms equal to 
zero, we obtain a system of ten ordinary differential equations with independent variable 
in ten functions G, H, Gk, Tk, Lk, F k of the form 
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�9 t Zf / / 
/ / 

8- I Z l  
t I 

2 
0 qO ' " 2oxj 

Fig. 1 

HF~ + F~Lk + FsF~ = O, HG~ + G~L~ + G3F ~ + Tk = 0, (3.7) 

HT~ + T~Lk + T3Fk = O, ? - ~  HG, + GH' + G (L~ + F~) = O. 

Specifying the initial data for the system (3.7), such that 

H(~o) :/: 0, ~(~o)  - -  V(~o) :/: 0, ( 3 . 8 )  

and solving the system (3.7) for the derivatives, we find that the Cauchy problem formulated 
for g = go, given conditions (3.8), has a unique solution in the neighborhood of the point 
go. 

The components of the velocity vactor and the sound velocity squared O now take the form 

u~ = G~(~), O = o(~), ( 3 . 9 )  
uk = Gk(~) + tTa(~) + x~La(~) -{- xsFa(~), k = 2 ,3 .  

The system (3.7) generates a class of unsteady rotatlonal gas flows. These solutions are 
important in the following aspect. The class of flows with a degenerate velocity hodograph, 
where the four-dimensional domain of definition of the flow in the physical x~, xs, xa space 
corresponds in u~, us, us, 8 space to a manifold of fewer dimensions, plays a definite role 
in gasdynamics. It is clear that the solutions (3.9) have a degenerate hodograph, because 
u, and 8 are functionally dependent. Calculating the determinant 

I = DO (uI'(~I, x,, "~' %)"8) = H' (L,F 8 -- LaF,), 

we verify that if H'(~o) # 0, (LsFa -- LaFs)(~o) # 0 for ~ = ~o, then the corresponding flow 
is a triple shock [5]. 

In the potential case [5] the construction of nontrlvial solutions in the class of 
triple shocks requires the analysis of a cumbersome overdetermined system of partial dlf- 
ferentlal equations. Only one substantial class of such solution is known [6]. 

It follows from (3.9) that the level manifold of all gasdynamical variables comprises 
straight lines in x,, xa, xs, t space. We thus infer from (3.9) that such a manifold is de- 
termined by the intersection of three hyperplanes (one of which is described by the equation 

= const). In this case the straight level lines under the conditions G, ~ 0, I ~ 0, gen- 
erally speaking, do not pass through a common fixed point of x,, xa, Xs, t space, i.e., the 
flow is not conical. Consequently, the constructed solution is a nonconical rotational 
triple shock with rectilinear generatrices. 

It is essential to test the solution for nonconicity, because the existence of self- 
similar conical rotational triple shocks is a trivial direct consequence of the gasdynamlcal 
equations. The type of solutions constructed here proves the nonemptiness of the class of 
nonconlcal rotational triple shocks (a complete description of this class of flows does not 
exist at the present time). 

Flows having rectilinear level lines have been classified for the unsteady planar case 
in [7] and for the steady three-dimensional case in [8]. There is no such classification for 
unsteady three-dlmensional flows. In this connection, it has been found in the cases investi- 
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gated above that nonconical rotational flows of the given classes --double shocks -- exist 
only in the exceptional case of an adiabatic exponent 7 = 2. The constructed solution (3.9) 
shows that this situation does not occur in unsteady ~hree-dlmenslonal flow, while nonconical 
rotational triple shocks with rectilinear level lines exist for any values of 7. 
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MODELS AND SIMILARITY ANALYSIS IN THE THERMODYNAMICS OF 

GAS--LIQUID SYSTEMS 

S. S. Kutateladze UDC 536.24 

Fundamental similarity numbers are considered for heat transfer and dynamics in gas-- 
liquid systems, including effects due to change of state and loss of stability. 

Introduction. Mikhail Alekseevich Lavrent'ev is a great master who has produced clear 
and efficient physicomathematical models in hydrodynamics. 

There are numerous relevant factors in the thermohydrodynamics of multiphase systems, and 
the flows have a multiplicity of structure, so such models are particularly important. There- 
fore, we hope that a compact exposition of some results in this area will constitute a tribute. 

Some of the complicated problems in thermoklnetics and mechanics of flowing media arise 
in the dynamics of gas--liquld systems, particularly in energy transport in phase transitions. 

The following features are the most important: 

i. The variety of dynamic structures and the variability in the spontaneous formations 
(bubbles, droplets, films, and Jets) in space and time. 

2. The wave effects at interfaces and within mixtures related to surface tension and the 
substantial dependence of signal transmissionspeeds on component concentrations and element 
structures. 

3. Effects from the thermohydrodynamics of primary nucleation and the distribution of 
condensation centers at boundaries and within the flow. 

4. The scope for states essentially metastable in the thermodynamic sense. 

5. The complications of turbulent transport related to features of the flow in the ele- 
ments of each phase, in addition to the common interphase turbulence. 

6. Quasiturbulent states can occur in a laminar flow on account of oscillations of dis- 
persed elements of the other phase. 
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