TWO CLASSES OF SOLUTIONS OF THE GASDYNAMICAL EQUATIONS

A. F. Sidorov UDC 533.6.011

1. A class of solutions of the unsteady three-dimensional gasdynamical equations has
been found [1] such that the components of the velocity vector depend linearly on all the space
coordinates x,, Xz, Xs. These solutions are described by a system of ordinary differential
equations with an independent time variable t and have been used, in particular, to study the
dynamics of a gravitating gas ellipsoid [2]. Certain solutions of the Navier—Stokes equations
for steady three-dimensional flows of an incompressible viscous f£luid with a linear dependence
of the components uj; of the velocity vector u on two coordinates x,, Xa, and with a special
pressure function p are described in [3].

Below, we investigate the solutions of the dynamical equations for an ideal gas, where
uj, the entropy fumction W, and the function Q = pY~' (in which p is the demsity and y is the
adiabatic exponent in the equation of state p = WpY) depend linearly on some of the space co-
ordinates. Unlike the situation in [1], the investigation of motioms of this type is reducible
in general to the analysis of the compatibility of overdetermined systems of partial differen-
tial equations having a complex structure.

We propose to set forth certain sufficient conditions whereby the corresponding over-
determined systems are reducible to determinate systems, for which the number of equations
is the same as the number of unknown functions and which have sufficient arbitrariness in the
solutions.. In this way we establish the nonemptiness of the given classes of solutions and
then, by the construction of concrete examples, demonstrate the substantiality of these
classes. The complete compatibility analysis of the overdetermined systems and the classifi-
cation of the solutions remain open questions.

In the absence of external forces the system of gasdynamical equations is written in the

form
%——{—(uv)u—{—@gradW—{—?%—inradQ::O; (1.1)
2 1+ (ugrad Q) + (3 — 1) Qdivu =0; (1.2)
&+ (ugrad W) =0, (1.3)
A. Linearity in One Coordinate. We seek solutlons of the system (1.1)-(1.3) in the form
w; = fi(1, T, )3 + £i(1, T, 1) (1.4)
Q = f(xlv T2, t)xa + g(xla T, t); (1.5)
W = F(2y, &, t)x3 + G(zq, 2, ). (l.é)

Substituting expressions (1.4)-(1.6) into the system (1.1)-(1.3), we reduce each equa-
tion of the system to the form

Al 4 By +Ci=0, i=1,2,...,5,

where the functions Aj, Bj, Cj are expressed in terms of the coefficients of the representa-
tions (1.4)~(1.6) and their derivatives and depend only om %, Xa, t. Setting

A;=B;,=(C;=0 (1.7
by the arbitrariness of xs, we obtain a system of 15 partial differential equations in 10 un-
known functions £, g4, £, g, F, G.

We introduce the two-dimensional vectors v = (f,, fa), w= (g1, ga), R = (g, £), 8 = (F,
G), P¢ = (F, ), Py = @G, g), Tj = (£, (yv/y — 1L)F), Tg = (g, (y/y —1)G). Then the system
(1.7) can be represented in the form
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op,
(V-V)V (Tf 7z, )_0 i:172? ‘ (1.8)

(vegrad fg) = 0, (v-grad f) + (v — 1)]‘ divv= 10,
- (v-grad F)

6P+ 9+ fo (R i)f;f—( ) =0 1=12 (1.9)

6V

, )
ot (veradg) + (warad ) + 73+ (B T) =0,

A+ (vgrad g) + (wgrad /) + vffy + (p — 1) fdivw + (p— 1) gdivy =0
F 1y (grad G) + (wgrad F) + Ff; = 0;
ow/ot - (wy)w - gsv + (Tg-0Poz;) = 0, i = 1,2, . _ (1.10)
0gs/0t + (w grad g;) + fsg3 + (Tg-S) =0, .
dglot + (w grad g) + vfgs + (y — g div w = 0,
8G9t +- (w grad G) + Fg, = 0.
Equations (1.8)-(1.10) are the respective systems Ay = 0, By = 0, and Cy = 0.

In the system (1.8)-(1.10) we set
flEfzstFﬁo.

Then v = Pf = T¢ = (R*3S8/9xy) = (S8*0R/3xj) = 0, and all the equations (1.8)-(1.9) except
the one containing 3fs/3t will be satisfied. There now remain six equations in six unknown
functions g;, ga, g3, £3, g, G. Finally, we write this determinate system in the form

T3+ (werad fy) + 12 =0,
ﬁt+(WV)W+gaI+ 62 =0, 1=1,2,

~ 0gy/0t +- (wgrad ga) + f3g3 =0,
dglat + (wgrad g) + (v — Dg(fs + div w) = 0,
9G/ot + (w grad G) =

(1.11)

We note that the case v = 0, (Tf ’Pf/axi) = 0, when FgY/Y-l = L(t) [L(t) is an arbitrary func-

tion}, yields an overdetermined system of seven equations in six functions gj, fs, F, G.
From the system of Eq. (1.11) we at once obtain equations describing certain special cases.

1. Putting g = 0 and assuming that all the unknown functions depend only on x, and t,
we obtain a system of five equations for plane-parallel (in the x,;, xz plane) flows with a
linear dependence of the principal functions on xs.

2. Putting 3/3t = 0 in (1.11), we obtain a system of equations for steady three-dimen-
sional flows.

3. For the elementary case of plane-parallel steady flow we write out the system of
ordinary differential equations for the functions g;(xi), ga(xi), £3(x1), g(x1), G(x1):

afs +13=0, &g+ + 1568 =0,
018+ 18, =0, &g+ —De(e+£)=0, g6 =0

It follows from the first and third equatioms (1.12) that gs = Cfs;, C = const, and with-
out loss of generality we can put C = 0, because C determines the shift of the origin along
the xs axis. 1In the given situation, therefore, we have a class of isentropic planar flows
(6 = Go = const), which is specified by the following relations after integration of the
second equation (1.12):

@ufs +13=0, ig%+~"—Gog=K >0 (K, = const), glg'+(v—1)g(g1+fs)=0. (1.13)

Expressing the functions g and g, in terms of fs, for fi3 we obtain a second-order equa-
tion that does not contain x;. Integrating it, we have
P+1 1

""Lfcz(fflf?—"Elfé)v“fa, Ky=(—1K, K,= const. (1.14)

(1.12)

fs
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Again the variable x, does not enter into (1.14), so that the system (1.12) is integ..-
ble in quadratures.

B. Linearity in Two Coordinates. We seek solutions of the system (1.1)-(1.3) in the
form

U; = li(xl’ t)-'”z + fi(zh t)xa + gi(xlalt)’ i= 17 2; 31
Q = l(xla t)xz + f(zla t)$3 + g(xl’ t)i (1_15)
W.= L($1, t).'Lz + F(:l:l, t)x3 + G(xl, t)-

Substituting (1.15) into (1.1)-(1.3), we obtain five relations of the type
Az} + Bayzy -+ Cx} + Dy + Ezg + F =0, (1.16)

the coefficients of which depend only on x;, t. Setting them equal to zero, we obtain an over-
determined system of 30 partial differential equations in 15 unknown functions from (1.15).

We set ,
ll—fl..—l—f=0

Then all the coefficients of squared terms in relations (1.16) vanish, leaving a system of 15
equations in 11 unknown functions.

In addition, setting
L=F=0,

we finally obtain a determinate system of nine equations in nine functions li, ls, fa, fs,
€15 825 83, 8, G+ It can be written in the form

al, al,
T + g+ bl b =0,

af . af, 9z, og,
Tt oGt i+ i =0, ﬁ+g15,—+gzli +&fi =0,
2 (1.17)

Y 98 _
+8& 16.z+ ‘Y-——iG -

G
+glaz+(v—1)g( +zz+f3) L Hrng-o

It follows from (1.17) that steady three-dimensional flows of the type (1.15) can only
be isentropic with G = Gy = const and are described by a system of eight ordinary differen-
tial equations.

All of the investigated flows A and B are rotational (3u,/dx%s # 3us/3x,), and in the
steady-flow cases the constant in the Bernoulli integral depends on the particular stream-
line and changes in transition to another streamline.

2. We now consider the feasibility of constructing shock solutions for the flow classes
A and B. Let us suppose that a shock wave S moves through a gas whose state is described by
the system (1.11) or (1.17) and that the postshock motion of the gas belongs to class A or B,
respectively. It is clear that if the motion of the shock front is described by the general
equation ¢(x,, Xa, t) = Xs, then in case A the five scalar Hugoniot conditions, which must
be satisfied along the surface S together with Eqs. (1.11) on both sides S, yield and overdeter-
mined system of 17 equations in 13 unknown functions depending on x;, Xz, t (the function ¢
can be regarded as unknown). We therefore assume that the motion of the surface of S is
described by the equation ¥(x,, Xa, t) = 0, i.e., at every instant the shock wave represents
a cylindrical surface in x,, X2, X3 space.

The Hugoniot conditions for our case have the form [4]

[0 (un — D) =0, [%(un—mwp(fii)]ﬂ, 2.1)
ip +p(un"'—D)2] ==0;
[(u-t))] =0, [(u-e)l =0, (2.2)

where up is the velocity component normal to the surface S, D is the normal velocity of prop-
agation of the shock wave, and T,, Tz are orthogonal unit vectors situated in the plane tan-
gent to S in X:, xa, X3 Space.
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Following are the expressions for u,, D, 7, and T3:

tn = (2, W) + 82 W) (Y1 + v, D=-Y, (92 + w7,
— k4
7, =(0,0,1), T=(¥, —¥,0(¥+¥), V= =

It follows from the first equation (2.2) that [ug] = 0, i.e., by the arbitrariness of x,

fs] = {gsl = 0. (2.3)
The remaining Hugoniot conditions yield the relations

1
[gv—l (8.¥: + &, ¥, + lI’t)] =0,
L (8. Y, 8, ¥, + ¥))? v —
[2 w24 vl =168 =0 - (2.4)

v 1
o1, v (8, Yyt 8T, T ¥,
Ga¥ ! 773 (8% 1 8,7, t
[g +g v

] =0, [£¥,—g¥]=0.

We thus in fact have the Hugoniot conditions for ordinary two-dimensional flows. Ac-
cording to the background values of g:, ga, g, G, g3, £s specified on one side of the shock
and the specified function ¥, conditions (2.4) together with the continuity conditions on the
component us (2.3) determine the initial conditions for all six unknown functions of the sys-
tem (1.11) along the noncharacteristic surface ¥ = 0, Consequently, the construction of

flows in class A with shock waves is indeed possible. A concrete example of such a flow is
discussed below.

Let us now suppose that for the class of solutions B the shock front is plane and that
its motion is specified by the equation ¥(x,, t) = 0 (an analysis of a more general specifi-
cation of the shock ylelds overdetermined systems of equations at a discontinuity). In the
given situation we have u, = g;, D = —¥e¥3t, 1, = (0, 0, 1), T2 = (0, 1, 0). From conditions
(2.2), by the arbitrariness of x, and xs, we obtain (the velocity components uj and us are
continuous)

L] = If] = [g] = L] = [f;] = [g] =0. (2.5)

Conditions (2.1), on the other hand, have the form

[
187 (e + ‘I't)] =0,

[ R T ] E (2.6)
g+ v+ g6] =0, |Ge" g (g, + ¥ =0.
2 y—1°7)

As in case A, having specified the background values of the functions of the class of
solutions B and the function ¥, we can then use (2.5) and (2.6) to find the initial data on
S for the system (1.17). Thus, the construction of discontinuous solutions of class B with
plane shock waves is possible.

3. Here we first investigate in greater detail solutions of the form
Uy = gy(xy), us = fs(xl)xa_a Uy = 0, Q = g(z,), W = G,,
described by the system (1.13).

Without sacrificing generality, we choose a system of units such that Ko = (y — 1)”' in
(1.13). Then we can represent the solution of Eq. (1.14) in the following parametric form
(K2 > 0, X is the parameter):

LI
fo = K,,(x2 _1-2—)*"17» v

3% 2 (3.1)
7 =— Ti;S”H (xz — ! ‘)?“1 (m R 1) dA.

Integrating the streamline equation 7
d'??x/ g1 = dzy/zsfs,
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in which g, is expressed in terms of f; by means of (1.13), we have along a given streamline
fs*3 = C* = const.

Thus, the investigated flows have the following geometrical property: Along each stream-
line the component us of the velocity vector preserves a constant value. The parametric
representations of xs along the streamline and the functions g and g; have the form

~Lopn
2= c* (7\,2—-7;1) v—l;“v—l; (3.2)
2
—1 1 1
g=1-1715 a—1 (3.3

Inasmuch as g > 0, we deduce the following constraint on the parameter X from (3.3):
A= V2 —1).

The case Kz < 0 is not realized, because it induces the relation g < 0. It follows from (3.1)
and (3.2) that for A = V(y + 1)/2 the streamlines have a turningpoint, while for A~>v2/(y—1)
and X - = they go to infinity. We can therefore construct two types of flows: one with

A e (V2/(y = 1), Y(y + 1)/2] and the other with » & [V/(y + 1)/2, =). The first, as we infer
from (3.3), is a rarefaction flow, and the second is a compression flow. For y = 3 the inte-
gration in (3.1) is carried to completion. The streamline equations are

o = (ln(x+1/x2—1)+

V..____) 4+ C, C = const,
_ C* ;\‘2 (3.4)
VR

For ¥ = 3, Kz =1, and C = 0 Fig. 1 shows the streamlines for rarefaction flow I in a semi-
. infinite plane channel for » € [/5 1) (the channel walls correspond to C* = 1 and C* = 2)
and for compression flow II for A & [/— ), In the rarefaction flow the demsity of the
gas decreases to zero at infinity.

We now examine the possibility of the rarefaction flow I going over to compression flow
of type 1II by means of a shock wave under the conditions of the problem stated in Sec. 2. Let
the background functions in the rarefaction flow I be described by Egs. (3.1)-(3.3), vGo = 1,
and for 3* € (V2/(y — 1), V(y+1)/2) let the plane x, = 1 correspond to a shock wave [under the
Hugoniot conditions (2.4) ¥, = ¥ = 0, ¥, = 1]. Expanding the Hugoniot conditions, we have

296G g* Y—1 &
+_ 0 *

T hrog Tyt (3.5)
where the index + corresponds to the parameters of the gas after passage of the shock wave
and g* and g, are determined from (3.3) for A = A%, TFrom (3.5) and (3.3) we obtain for the
parameter At

g

A= (y + 020 > V(v + 1)/2,

i.e., after passage of the shock wave the flow is of type II with X\ € [A*, »), Choosing the
values of the constants C and Kz in (3.4) in such a way as to ensure continuity of the stream-
lines for x, = xf, we obtain a gas flow with a shock wave x; = xf in a semiinfinite plane chan-
nel, which first diverges for x; < x% and then converges for x; > x¥. For x, > %} compression

flow 1s realized, where
ptlp* =2/(y + 1)A*2 > 1,

For y = 3 and A* = 1.1 Fig. 1 illustrates such a channel, the numeral III corresponding
to the compression zone in the chanmnel.
We now consider isentropic flows B described by Egs. (1.17) with G = Go = const. We
construct a speclal class of solutions for this system, putting
g1 = Gu(®), & = Gu(®) + Ta(®), b = La(R), fo = Fal®), k=2, 3, (3.6)
g =0G(E), E =2, — at, a =const, H =G, — a.

Substituting (3.6) into (1.17) and setting the coefficients of t and the free terms equal to
" zero, we obtain a system of ten ordinary differential equations with independent variable £

in ten functions G, H, Gy, Ty, Ly, Fi of the form
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0 10 . 210.2'3
Fig. 1
HE' + A 6= 0, HLj+ Loy + LF, =,
HFy, -+ FoLy + FsFy, = 0, HGy + Gyl + Gy + Ty = 0, 3.0
HT + Toly + T5F, =0, «z—iTHG’+GH’+G(L2+F3)=0- |

Specifying the initial data for the system (3.7), such that
H(E) # 0, H*E) — G(E) # 0, (3.8)
and solving the system (3.7) for the derivatives, we find that the Cauchy problem formulated

for £ = Eq, given conditions (3.8), has a unique solution in the neighborhood of the point
Eo.

The components of the velocity vactor and the sound velocity squared 6 now take the form

Uy = G1(§)7 e = B(E), (3.9)
up = Gy(§) + tTw(8) + 2oLn(8) + z:Fx(E), & = 2,3.

The system (3.7) generates a class of unsteady rotational gas flows. These solutions are
important in the following aspect. The class of flows with a degenerate velocity hodograph,
where the four~dimensional domain of definition of the flow in the physical x,, x2, xs space
corresponds in u,, uz, us, 6 space to a manifold of fewer dimensions, plays a definite role
in gasdynamics. It is clear that the solutions (3.9) have a degenerate hodograph, because
u, and 6 are functionally dependent. Calculating the determinant

D (uy, uy, uy)
D (21, 2y, 25)

we verify that if H'(Ze) # 0, (LaFs — LsFa)(Eo) # O for £ = £o, then the. corresponding flow
is a triple shock [5].

I= = H' (LyFy — L4Fy),

In the potential case [5] the construction of nontrivial solutions in the class of
triple shocks requires the analysis of a cumbersome overdetermined system of partial dif-
ferential equations. Only one substantial class of such solution is known [6].

It follows from (3.9) that the level manifold of all gasdynamical variables comprises
straight lines in x,, %z, Xs, t space. We thus infer from (3.9) that such a manifold is de-
termined by the intersection of three hyperplanes (one of which is described by the equation
£ = const). In this case the straight level lines under the conditions G, # 0, I # 0, gen-
erally speaking, do not pass through a common fixed point of x,, X2, X3, t space, i.e., the
flow is not conical. Consequently, the constructed solution is a nonconical rotational
triple shock with rectilinear generatrices.

It is essential to test the solution for nonconicity, because the existence of self-
similar conical rotational triple shocks 1s a trivial direct consequence of the gasdynamical
equations. The type of solutions constructed here proves the nonemptiness of the class of
nonconical rotational triple shocks (a complete description of this class of flows does not
exist at the present time).

Flows having rectilinear level lines have been classified for the unsteady planar case
in [7] and for the steady three-dimensional case in [8]. There is no such classification for
unsteady three-dimensional flows. In this connection, it has been found in the cases investi-
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gated above that nonconical rotational flows of the given classes — double shocks — exist
only in the exceptional case of an adiabatic exponent y = 2. The constructed solution (3.9)
shows that this situation does not occur in unsteady three-dimensional flow, while nonconical
rotational triple shocks with rectilinear level lines exist for any values of y.
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MODELS AND SIMILARITY ANALYSIS IN THE THERMODYNAMICS OF
GAS—LIQUID SYSTEMS

S. S. Kutateladze UDC 536.24

Fundamental similarity numbers are considered for heat transfer and dynamics in gas—
liquid systems, including effects due to change of state and loss of stability.

Introduction, Mikhail Alekseevich Lavrent'ev is a great master who has produced clear
and efficient physicomathematical models in hydrodynamics.

There are numerous relevant factors in the thermohydrodynamics of multiphase systems, and
the flows have a multiplicity of structure, so such models are particularly important. There-
fore, we hope that a compact exposition of some results in this area will constitute a tribute.

Some of the complicated problems in thermokinetics and mechanics of flowing media arise
in the dynamics of gas—liquid systems, particularly in energy transport in phase transitions.

The following features are the most important:

1. The variety of dynamic structures and the variability in the spontaneous formations
(bubbles, droplets, films, and jets) in space and time.

2. The wave effects at interfaces and within mixtures related to surface temsion and the
substantial dependence of signal transmission speeds on component concentrations and element
structures.

3. Effects from the thermohydrodynamics of primary nucleation and the distribution of
condensation centers at boundaries and within the flow.

4. The scope for states essentially metastable in the thermodynamic sense.

5. The complications of turbulent transport related to features of the flow in the ele-
ments of each phase, in addition to the common interphase turbulence.

6. Quasiturbulent states can occur in a laminar flow on account of oscillations of dis-
persed elements of the other phase.
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